PETROLEUM GEOLOGY OF THE RUSSIAN FAR-EAST

CONTENTS

PART I:

INTRODUCTION TO THE RUSSIAN FAR EAST AND ITS STRUCTURAL DEVELOPMENT.

Chapter 1. The Russian Far East: Introduction and Infrastructure.

- 1.1 Description of the Report
- 1.2 Brief Description of the Russian Far East, its Geography and Infrastructure
- 1.3 Brief Historical Review of the Hydrocarbon Industry in the Russian Far East

Chapter 2. Tectonic Evolution of the Russian Far East since the Palaeozoic

- I.2.1 Precambrian and Palaeozoic Development
- I.2.2 Mesozoic Development
 - I.2.2.1 The Kolyma-Omolon Superterrane and Verkhoyan Fold Belt
 - I.2.2.2 The Mongol-Okhotsk Belt
 - I.2.2.3 The South Anyui Basin and Suture Zone
 - I.2.2.4 Development of the Cretaceous "Beringian margin"
 - The Sikhote-Alin Sector (Early Cretaceous Phase)
 - Mid- to Late Cretaceous Development
 - The Okhotsk Sea Microplate and Its Emplacement
 - Latest Cretaceous: The Omgon-Palana Collisional Belt and West Kamchatka; Contrasting Models
- I.2.3 Cenozoic Development
 - I.2.3.1 Kamchatka-Koryak Region
 - Achaivayam-Ozernovsky-Valaginsk Island Arc
 - Accretion of the Achaivayam-Ozernovsky-Valaginsk Arc Terranes
 - The Komandorsky Basin, Shirshov Ridge and Kronotsky Arc
 - I.2.3.2 The Sakhalin-Hokkaido Region
 - I.2.3.3 North Okhtosk Rifting and Basin Development
 - I.2.3.4 The South Okhotsk Back-Arc Basin
 - I.2.3.5 The Tatar Strait Basin
 - I.2.3.6 The Northern Continental Region and Arctic Basin
 - I.2.3.7 Other Late Tertiary Events and Setting the Modern Stage.

PART II: PETROLEUM GEOLOGY AND HYDROCARBON PROSPECTIVITY OF THE RUSSIAN FAR EAST

Chapter 1. The Mesozoic Basins of Pre-Amur'e and Momo-Zyryan.

- II.1.1 The Basins of Pre-Amur'e
 - II.1.1.1 Amur-Bureya (= Amur-Zeya or Zeya-Bureya) Basin
 - Basement
 - Ekaterinoslavka Suite and equivalents
 - Itikutsk Suite and equivalents
 - Poyarkovo Suite
 - Zavitinsk Suite
 - Chagoyan Suite
 - Tertiary and Quaternary deposits
 - II.1.1.2 Upper Bureya Basin (= Bureya Basin)
 - Dublikansk and Soloniisk Suites (Urgalsk Group)
 - Chagdamynsk and Chemchukinsk Suites
 - Late Aptian and Younger Development
 - II.1.1.3 Partizan (Suchan) Basin
 - II.1.1.4 Razdol'noe (Suifen) Basin
 - II.1.1.5 Middle Amur Basin (including Alchan Basin)
 - Middle Amur Basin
 - Alchan Basin
 - II.1.1.6 Upper Zeya (Uda) Basin
 - II.1.1.7 Hydrocarbon Potential of the Pre-Amur'e Basins
 - Amur-Bureya Basin
 - Upper Bureya Basin
- II.1.2 The Momo-Zyryan Basin
 - II.1.2.1 Tectonic History and Structure of the Momo-Zyryan Basin
 - II.1.2.2 Stratigraphy, Lithology and Depositional Environments
 - II.1.2.3 Hydrocarbon Potential of the Momo and Zyryan Basins
 - Source rocks
 - Reservoirs and seals
 - Trap types
 - Hydrocarbon type

Chapter 2. Basins of the Bering Sea Shelf and Adjacent Land Areas.

- II.2.1 Navarin Basin
 - II.2.1.1 Tectonic Development
 - II.2.1.2 Stratigraphy, Lithology and Depositional Environments
 - II.2.1.3 Hydrocarbon potential
- II.2.2 Anadyr Basin
 - II.2.2.1 Tectonic Development
 - II.2.2.2 Stratigraphy, Lithology and Depositional Environments
 - Late Cretaceous
 - Palaeogene
 - Neogene
 - Pliocene-Quaternary
 - II.2.2.3 Hydrocarbon potential
 - Source rocks
 - Reservoirs and seals
 - Trap types
 - Hydrocarbon type
- II.2.3 Khatyrka Basin
 - II.2.3.1 Tectonic Development
 - II.2.3.2 Stratigraphy, Lithology and Depositional Environments
 - Palaeocene to Middle Eocene
 - Late Eocene to Oligocene
 - Early Miocene
 - Middle Miocene
 - Middle Miocene to Pliocene
 - Pliocene to Quaternary
 - II.2.3.3 Hydrocarbon potential
 - Source rocks
 - Reservoirs and seals
 - Trap types
 - Hydrocarbon type
- II.2.4 Penzhina Basin
 - II.2.4.1 Tectonic Development
 - II.2.4.2 Stratigraphy, Lithology and Depositional Environments
 - II.2.4.3 Hydrocarbon potential
 - Source rocks
 - Reservoirs and seals
 - Trap types

II.2.5 Pustorets (Kinkil') Basin (including the Parapol Basin)

- II.2.5.1 Tectonic Development
- II.2.5.2 Stratigraphy, Lithology and Depositional Environments
- II.2.5.3 Hydrocarbon potential
 - Source rocks
 - Reservoirs and seals
 - Trap types
 - Hydrocarbon type

II.2.6 Komandorsky Basin

- II.2.6.1 Tectonic Development
- II.2.6.2 Stratigraphy, Lithology and Depositional Environments
- II.2.6.3 Hydrocarbon potential

II.2.7 Il'pin-Karagin and Olyutor Basins

- II.2.7.1 Tectonic Development
- II.2.7.2 Stratigraphy, Lithology and Depositional Environments
- II.2.7.3 Hydrocarbon potential
 - Source rocks
 - Reservoirs and seals
 - Trap types
 - Hydrocarbon type

II.2.8 East Kamchatka Basin

- II.2.8.1 Tectonic Development
- II.2.8.2 Stratigraphy, Lithology and Depositional Environments
- II.2.8.3 Hydrocarbon potential
 - Source rocks
 - Reservoirs and seals
 - Trap types
 - Hydrocarbon type

II.2.9 Central Kamchatka Basin

- II.2.9.1 Tectonic Development
- II.2.9.2 Stratigraphy, Lithology and Depositional Environments
- II.2.9.3 Hydrocarbon potential
 - Source rocks
 - Reservoirs and seals
 - Trap types
 - Hydrocarbon type

Chapter 3. The North Okhotsk-West Kamchatka Basin Group.

- II.3.1 Tectonic Development
- II.3.2 Stratigraphy, Lithology and Depositional Environments
 - II.3.2.1 Palaeocene to Oligocene stage
 - II.3.2.2 Late Oligocene to Middle Miocene stage
 - II.3.2.3 Middle to Late Miocene stage
 - II.3.2.4 Pliocene to Quaternary stage
- II.3.3 Hydrocarbon potential
 - II.3.3.1 Source rocks
 - II.3.3.2 Reservoirs and seals
 - II.3.3.3 Trap types
 - II.3.3.4 Hydrocarbon type

Chapter 4. Sakhalin Basin Group.

- II.4.1 Tectonic Development
- II.4.2 Stratigraphy, Lithology and Depositional Environments
 - 11.4.2.1 Palaeogene to Early Middle Miocene stage
 - 11.4.2.2 Middle Miocene to Quaternary stage
- II.4.3 Hydrocarbon potential
 - II.4.3.1 Source rocks
 - II.4.3.2 Reservoirs and seals
 - II.4.3.3 Trap types
 - II.4.3.4 Hydrocarbon type

Chapter 5. Isikari-West Sakhalin Basin Group.

- II.5.1 Tectonic Development
- II.5.2 Stratigraphy, Lithology and Depositional Environments
 - II.5.2.1 Palaeocene to Early Miocene
 - II.5.2.2 Middle Miocene to Pliocene
 - II.5.2.3 Pliocene to Quaternary
- II.5.3 Hydrocarbon potential
 - II.5.3.1 Source rocks
 - II.5.3.2 Reservoirs and seals
 - II.5.3.3 Trap types
 - II.5.3.4 Hydrocarbon type

Chapter 6. South Okhotsk Basin.

- II.6.1 Tectonic Development
- II.6.2 Stratigraphy, Lithology and Depositional Environments
 - II.6.2.1 The Central Kurils Trough
 - II 6.2.2 The Golygin Basin
 - II.6.2.3 The South Okhotsk Basin
- II.6.3 Hydrocarbon Potential
 - II.6.3.1 Source rocks
 - II.6.3.2 Reservoirs and seals
 - II.6.3.3 Trap types
 - II 6.3.4 Hydrocarbon types

REFERENCES

APPENDIX: FIELD DATABASE (Extract from Blackbourn Geoconsulting's FSU Oil & Gas Field Database

LIST OF FIGURES

Figure 1:	Composite legend for stratigraphic sections
Figure I.2.1:	Cartoon palaeotectonic reconstruction for Late Carboniferous-Early
	Permian
Figure I.2.2:	Cartoon palaeotectonic reconstruction for Late Jurassic-Early Cretaceous
Figure I.2.3:	Cartoon palaeotectonic reconstruction for Mid Cretaceous (Late Albian-
	Cenomanian)
Figure I.2.4:	Cartoon palaeotectonic reconstruction for Late Cretaceous-Early Palaeogene
Figure I.2.5:	Cartoon palaeotectonic reconstruction for Middle Miocene
Figure II.1.1:	Sedimentary basins of Southeast Russia
Figure II.1.2:	Schematic cross section of the Amur-Bureya Basin
Figure II.1.3:	Stratigraphy and depositional environments of the main Late Mesozoic-
	Cenozoic sedimentary basins of Southeast Russia
Figure II.1.4:	Schematic cross-sections of (A) the Upper Bureya Basin and (B) the
	Upper Zeya (Uda) Basin
Figure II.1.5:	Generalised structure map of the Momo-Zyryan Basin
Figure II.1.6:	Generalised stratigraphy of the Momo-Zyryan Basin sedimentary fill
Figure II.2.1:	Navarin Basin: Generalised structure map (a), stratigraphy of ARCO
	COST-1 well (b), and cross-section of the South Basin (c)
Figure II.2.2:	Chronostratigraphic chart for the Navarin Basin taken from North-South
	section through exploratory wells
Figure II.2.3:	Schematic cross-sections of the Anadyr Basin based on well data
	(sections I-I' and II-II') and seismo-stratigraphy (section III-III')
Figure II.2.4:	Anadyr Basin: comparative stratigraphic sections of the south, north and
	offshore areas
Figure II.2.5:	Cross-section of the Khatyrka Basin along the coast of the Bering Sea
Figure II.2.6:	Attempted correlation of Palaeocene-Lower Pleistocene deposits in the
	Khatyrka Basin (based on Agapitov & Mitronova, 1998 & 1999)
Figure II.2.7:	General location map of the Penzhina, Pustorets, Il'pin-Karagin and
	Olyutor Basins showing major tectonic elements
Figure II.2.8:	Schematic cross-section of the northern part of the Penzhina Basin

- Figure II.2.9: Schematic stratigraphic sections across the Pustorets Basin
- Figure II.2.10: Komandorsky Basin: location and generalised structure
- Figure II.2.11: Schematic stratigraphy of the Litken, Korfov and Vyven sub-basins of the Il'pin-Karagin Basin
- Figure II.2.12: Central and East Kamchatka Basins: major structural elements and position of the basins within the Kamchatka Peninsula
- Figure II.2.13: Schematic stratigraphic relationships of the East Kamchatka Basin showing tectonic controls over formation development
- Figure II.2.14: Schematic West-East cross-section of the Kumroch Ridge, East Kamchatka
- Figure II.2.15: Schematic litho-stratigraphic correlation of the Central Kamchatka Basin
- Figure II.3.1: General location map of the North Okhotsk-West Kamchatka group of basins
- Figure II.3.2: Seismic section showing graben structure of the Motyklei rift basin,

 Magadan Basin
- Figure II.3.3: Conjectural stratigraphic summary of the northern basins in the Okhotsk-West Kamchatka Group based on seismic data, analogous onshore outcrop data and the M-1 parametric well
- Figure II.3.4: Generalised stratigraphic summary of the Cenozoic stratigraphy of the West Kamchatka Basin based on well data, outcrop data and seismic data
- Figure II.3.5: Interpreted West-East seismic section across the southern TINRO Basin towards its junction with the West Kamchatka group of basins
- Figure II.3.6: Cross-section of the Kamchatka Peninsula from the Kolpakov Basin in the west to the Shipunsky Peninsula in the southeast showing accretion of island arc terranes
- Figure II.3.7: Interpreted seismic sections showing the structure and seismicstratigraphy of the Northwest Okhotsk Sea area
- Figure II.3.8: Schematic South-North cross-section and generalised structural map of the Kolpakov Basin
- Figure II.4.1: Generalised East-West cross-section from the Sea of Okhotsk across Sakhalin Island and the Tatar Strait to Sikhote-Alin
- Figure II.4.2: Seismic section (a) and interpreted section (b) across the Langryisk Basin

- Figure II.4.3: Interpreted seismic profiles across the shelf of Northeast Sakhalin to illustrate sedimentary structure and different trap types: (A) anticline; (B) serpentinite massif thrust over Daekhurie oil source rocks; and (C) sandstone fan in dominantly clay facies
- Figure II.4.4: Upper Miocene-Pliocene (Nutovo) reservoir sandstones on Sakhalin Island. Lateral equivalents of those forming the Pil'tun-Astokhsk and Odoptu-more fields
- Figure II.5.1: Ishikari-West Sakhalin Basins: generalised location map showing major structural elements
- Figure II.5.2: Schematic cross-sections of the Ishikari-West Sakhalin Basin
- Figure II.5.3: Generalised correlation of stratigraphy and tectonic events in the Ishikari-West Sakhalin Basin, based on seismic, outcrop sections and boreholes
- Figure II.6.1: South Okhotsk group of basins, and Kurils Island Arc: location map showing major structural features
- Figure II.6.2: Seismic section across the Central Kurils Trough
- Figure II.6.3 Stratigraphy of the onshore part of the Golygin Basin
- Figure II.6.4: Generalised seismic-stratigraphy of the north and south margins of the South Okhotsk Basin
- TABLE 1: Sedimentary basins of the Russian Far East: main components of known and potential hydrocarbon systems.
- ENCLOSURE 1: NORTHEAST RUSSIA LOCATION AND INFRASTRUCTURE MAP
- ENCLOSURE 2: NORTHEAST RUSSIA BASEMENT MAP
- ENCLOSURE 3: ANADYR AND KHATYRKA BASINS –
 Generalised location map showing major structural features
- ENCLOSURE 4: SAKHALIN-OKHOTSK SEDIMENTARY BASIN Generalised location map
- ENCLOSURE 5: SAKHALIN-OKHOTSK BASIN –
 Stratigraphic sections and attempted correlation